Carignano, StefanoSoto Riera, JoanTorrente Badia, Pau2024-10-182024-10-182024-06https://hdl.handle.net/2445/215876Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2024, Tutors: Stefano Carignano, Joan Soto RieraIn this work we overview the Tensor Train Cross decomposition of large tensors and its applicability to high-dimensional integration. Furthermore, two different algorithms for building this decomposition are showcased and compared against a Monte Carlo method, both outperforming it in terms of resource efficiency. A python package is also presented, containing these two algorithms along other tools to leverage the power of the framework in a comprehensive and easy to use manner6 p.application/pdfengcc-by-nc-nd (c) Torrente, 2024http://creativecommons.org/licenses/by-nc-nd/3.0/es/Xarxes tensorialsIntegració numèricaTreballs de fi de grauTensor networkNumerical integrationBachelor's thesesTensor network based integration methodsinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess