Berenguel Montoro, RubénFagella Rabionet, Núria2020-06-032020-06-0320101023-6198https://hdl.handle.net/2445/164096We study the class of entire transcendental maps of finite order with one critical point and one asymptotic value, which has exactly one finite pre-image, and having a persistent Siegel disc. After normalisation this is a one parameter family $f_{a}$ with $a \in \mathbb{C}^{*}$ which includes the semi-standard map $\lambda z \mathrm{e}^{z}$ at $a=1$, approaches the exponential map when $a \rightarrow 0$ and a quadratic polynomial when $a \rightarrow \infty$. We investigate the stable components of the parameter plane (capture components and semi-hyperbolic components) and also some topological properties of the Siegel disc in terms of the parameter.31 p.application/pdfeng(c) Taylor and Francis, 2010Sistemes dinàmics complexosFuncions de variables complexesComplex dynamical systemsFunctions of complex variablesAn entire transcendental family with a persistent Siegel discinfo:eu-repo/semantics/article5739142020-06-03info:eu-repo/semantics/openAccess