Barza, SorinaKolyada, ViktorSoria de Diego, F. Javier2016-02-242016-02-2420090002-9947https://hdl.handle.net/2445/95822We study the Lorentz spaces $ L^{p,s}(R,\mu)$ in the range $ 1<p<s\le \infty$, for which the standard functional $\displaystyle \vert\vert f\vert\vert _{p,s}=\left(\int_0^\infty (t^{1/p}f^*(t))^s\frac{dt}{t}\right)^{1/s} $ is only a quasi-norm. We find the optimal constant in the triangle inequality for this quasi-norm, which leads us to consider the following decomposition norm: $\displaystyle \vert\vert f\vert\vert _{(p,s)}=\inf\bigg\{\sum_{k}\vert\vert f_k\vert\vert _{p,s}\bigg\}, $ where the infimum is taken over all finite representations $ f=\sum_{k}f_k. $ We also prove that the decomposition norm and the dual norm $\displaystyle \vert\vert f\vert\vert _{p,s}'= \sup\left\{ \int_R fg d\mu: \vert\vert g\vert\vert _{p',s'}=1\right\}$ agree for all values of $ p,s>1$.20 p.application/pdfeng(c) American Mathematical Society (AMS), 2009AnĂ lisi funcionalEspais de LorentzFunctional analysisLorentz spacesSharp constants related to the triangle inequality in Lorentz spacesinfo:eu-repo/semantics/article5555092016-02-24info:eu-repo/semantics/openAccess