Rios Huguet, ArnauRozalén Sarmiento, JavierMartíınez Marimon, Alba2024-10-152024-10-152024-06https://hdl.handle.net/2445/215795Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2024, Tutors: Arnau Rios Huguet, Javier Rozalén SarmientoIn this paper, machine learning is used to model the imaginary part of the self-energy of a neutron-star binary system, which is approximated as infinite neutron matter. The performance of the model is evaluated by computing physical properties such as the momentum distribution and the total energy. The results obtained with the model show a high degree of accuracy when compared to theoretical values5 p.application/pdfengcc-by-nc-nd (c) Martínez, 2024http://creativecommons.org/licenses/by-nc-nd/3.0/es/Aprenentatge automàticEstels de neutronsTreballs de fi de grauMachine learningNeutron starsBachelor's thesesMachine Learning for Infinite Neutron Matter at Finite Temperaturesinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess