Campos, BeatrizGarijo Real, AntonioJarque i Ribera, XavierVindel, Pura2017-03-172018-11-012016-11-010096-3003https://hdl.handle.net/2445/108550We investigate the parameter plane of the Newton's method applied to the family of quartic polynomials $p_{a,b}(z)=z^4+az^3+bz^2+az+1$, where $a$ and $b$ are real parameters. We divide the parameter plane $(a,b) \in \mathbb R^2$ into twelve open and connected {\it regions} where $p$, $p'$ and $p''$ have simple roots. In each of these regions we focus on the study of the Newton's operator acting on the Riemann sphere.10 p.application/pdfengcc-by-nc-nd (c) Elsevier B.V., 2016http://creativecommons.org/licenses/by-nc-nd/3.0/esSistemes dinĂ mics diferenciablesDifferentiable dynamical systemsNewton's method for symmetric quartic polynomialsinfo:eu-repo/semantics/article6697032017-03-17info:eu-repo/semantics/openAccess