Radeva, PetiaMartín Martrus, Joan2023-06-212023-06-212023-01-24https://hdl.handle.net/2445/199543Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Petia Radeva[en] Recommendation systems are present in many of the mobile applications we use on a daily basis. Companies like Amazon, Netflix or Spotify use these algorithms to improve the user experience in their products. This is a benefit but when there is an excess of content the recommendation system can be useless. We will focus on transforming a website about restaurants in Barcelona into a mobile application that recommends restaurants adapted to the user’s profile, combining a first human filter and a recommendation system to mitigate content overdose.44 p.application/pdfcatmemòria: cc-nc-nd (c) Joan Martín Martrus, 2023codi: GPL (c) Joan Martín Martrus, 2023http://creativecommons.org/licenses/by-nc-nd/3.0/es/http://www.gnu.org/licenses/gpl-3.0.ca.htmlSistemes d'ajuda a la decisióRestaurantsProgramariTreballs de fi de grauAplicacions mòbilsBarcelona (Catalunya)Decision support systemsRestaurantsComputer softwareMobile appsBarcelona (Catalonia)Bachelor's thesesEatingBarna: recomanador de restaurants a la ciutat de Barcelonainfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess