Travesa i Grau, ArturGarcia Tarrach, Guillem2018-11-022018-11-022018-06-27https://hdl.handle.net/2445/125805Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Artur Travesa i Grau[en] The ring of integers is a unique factorization domain, but, in general, this isn’t the case for the ring of integers of a number field. The class number 1 problem consists in giving a complete list of all imaginary quadratic fields whose ring of integers is a unique factorization domain. In this thesis we provide an adaptation of Kurt Heegner’s original solution including an overview of the required theoretical tools, namely class field theory and the theory of elliptic curves with complex multiplication.49 p.application/pdfcatcc-by-nc-nd (c) Guillem Garcia Tarrach, 2018http://creativecommons.org/licenses/by-nc-nd/3.0/es/Teoria algebraica de nombresTreballs de fi de grauAnells (Àlgebra)Teoria de cossos de classeCorbes el·líptiquesFormes quadràtiquesAlgebraic number theoryBachelor's thesesRings (Algebra)Class field theoryElliptic curvesQuadratic formsEl problema del nombre de classes 1info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess