Fortiana Gregori, JosepMorera de Frutos, Marc2021-11-232021-11-232021-01-24https://hdl.handle.net/2445/181389Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Josep Fortiana Gregori[en] In this project we study clustering methods, focusing on the two most used classes of algorithms: partitional and hierarchical. We explore definition and performance of several methods, as well as some criteria to validate results. Then, we assess computational problems arising from adapting generic clustering methods to tackle large data sets, as well as algorithms designed with the goal of improving their performance in these cases. We include R code to demonstrate practical applications of clustering and to generate graphical visualizations.47 p.application/pdfcatcc-by-nc-nd (c) Marc Morera de Frutos, 2021http://creativecommons.org/licenses/by-nc-nd/3.0/es/Anàlisi de conglomeratsTreballs de fi de grauAnàlisi multivariableMineria de dadesAlgorismes computacionalsCluster analysisBachelor's thesesMultivariate analysisData miningComputer algorithmsMètodes i models per a l'anàlisi de clústersinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess