Campos, BeatrizGarijo Real, AntonioJarque i Ribera, XavierVindel, Pura2015-02-182014-09-150214-1493https://hdl.handle.net/2445/63103In this paper we study the topology of the hyperbolic component of the parameter plane for the Newton's method applied to n-degree Bring<br>Jerrard polynomials given by $P_{n}(z)=z^{n}-cz +1, c \in \mathbb{C}$. For $n=5$ using the Tschirnhaus<br>Bring<br>Jerrard nonlinear transformations, this family controls, at least theoretically, the roots of all quintic polynomials. We also study a bifurcation cascade of the bifurcation locus by considering $c\in\mathbb{R}$29 p.application/pdfeng(c) Universitat Autònoma de Barcelona, 2014Sistemes dinàmics diferenciablesDinàmica topològicaDifferentiable dynamical systemsTopological dynamicsNewton's method on bring-Jerrard polynomialsinfo:eu-repo/semantics/article6365792015-02-18info:eu-repo/semantics/openAccess