Weidner, Marvin2025-01-172025-01-172023-040304-4149https://hdl.handle.net/2445/217593The aim of this article is to prove that diffusion processes in $\mathbb{R}^d$ with a drift can be approximated by suitable Markov chains on $n^{-1} \mathbb{Z}^d$. Moreover, we investigate sufficient conditions on the edge weights which guarantee convergence of the associated Markov chains to such Markov processes. Analogous questions are answered for a large class of nonsymmetric jump processes. The proofs of our results rely on regularity estimates for weak solutions to the corresponding nonsymmetric parabolic equations and Dirichlet form techniques.44 p.application/pdfengcc-by (c) Marvin Weidner., 2023http://creativecommons.org/licenses/by/3.0/es/Operadors diferencialsTeoremes de límit (Teoria de probabilitats)Convergència (Matemàtica)Processos de MarkovDifferential operatorsLimit theorems (Probability theory)ConvergenceMarkov processesMarkov chain approximations for nonsymmetric processesinfo:eu-repo/semantics/article2025-01-17info:eu-repo/semantics/openAccess