Ortega Cerdà, JoaquimPridhnani, Bharti2013-03-202013-03-202012-100022-1236https://hdl.handle.net/2445/34321Given a compact Riemannian manifold $M$, we consider the subspace of $L^2(M)$ generated by the eigenfunctions of the Laplacian of eigenvalue less than $L\geq1$. This space behaves like a space of polynomials and we have an analogy with the Paley-Wiener spaces. We study the interpolating and Marcinkiewicz-Zygmund (M-Z) families and provide necessary conditions for sampling and interpolation in terms of the Beurling-Landau densities. As an application, we prove the equidistribution of the Fekete arrays on some compact manifolds.39 p.application/pdfeng(c) Elsevier, 2012Teoria espectral (Matemàtica)Anàlisi global (Matemàtica)Spectral theory (Mathematics)Global analysis (Mathematics)Beurling-Landau's density on compact manifoldsinfo:eu-repo/semantics/article6155182013-03-20info:eu-repo/semantics/openAccess