Lavila Vidal, Olga2020-03-052020-03-051996https://hdl.handle.net/2445/152103Preprint enviat per a la seva publicació en una revista científica: Manuscripta Mathematica, 1998, vol. 95, pp. 47–58. [https://doi.org/10.1007/BF02678014]We consider the blowing up of ℙ k/n−1 along a closed subscheme defined by a homogeneous idealI ∪A=k[X 1, …,X n ] generated by forms of degree ≤d, and its projective embeddings by the linear systems corresponding to (I e) c , forc≥de+1. The homogeneous coordinate rings of these embeddings arek[(I e) c ]. One wants to study the Cohen-Macaulay property of these rings. We will prove that if the Rees algebraR A (I) is Cohen-Macaulay, thenk[(I e) c ] are Cohen-Macaulay forc>>e>0, thus proving a conjecture stated by A. Conca, J. Herzog, N.V. Trung and G. Valla.17 p.application/pdfeng(c) Olga Lavila, 1996Anells commutatiusHomologiaMòduls de Cohen-MacaulayUniversitat de Barcelona. Institut de MatemàticaOn the Cohen-Macaulayness of diagonal subalgebras of the Rees algebrainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccess