Martínez Alonso, Juan CarlosSoukup, Lajos2022-05-112022-05-112021-07-090168-0072https://hdl.handle.net/2445/185509For any regular cardinal $\kappa$ and ordinal $\eta<\kappa^{++}$it is consistent that $2^{\kappa}$ is as large as you wish, and every function $f: \eta \longrightarrow\left[\kappa, 2^{\kappa}\right] \cap$ Card with $f(\alpha)=\kappa$ for $c f(\alpha)<\kappa$ is the cardinal sequence of some locally compact scattered space.application/pdfengcc-by (c) Martínez Alonso, Juan Carlos et al., 2021http://creativecommons.org/licenses/by/3.0/es/TopologiaÀlgebra de BooleTeoria de conjuntsTopologyBoolean algebrasSet theoryA consistency result on long cardinal sequencesinfo:eu-repo/semantics/article7199832022-05-11info:eu-repo/semantics/openAccess