Auscher, Pascal, 1963-Carro Rossell, María Jesús2009-04-162009-04-1619941088-6850https://hdl.handle.net/2445/7762For a large class of radial multipliers on $ {L^p}({{\mathbf{R}}^{\mathbf{n}}})$, we obtain bounds that do not depend on the dimension n. These estimates apply to well-known multiplier operators and also give another proof of the boundedness of the Hardy-Littlewood maximal function over Euclidean balls on $ {L^p}({{\mathbf{R}}^{\mathbf{n}}})$, $ p \geq 2$, with constant independent of the dimension. The proof is based on the corresponding result for the Riesz transforms and the method of rotations.20 p.application/pdfeng(c) American Mathematical Society, 1994Multiplicadors (Matemàtica)MultipliersMaximal functionsTransference for radial multipliers and dimension free estimatesinfo:eu-repo/semantics/article83129info:eu-repo/semantics/openAccess