Villarroel, JavierMontero Torralbo, MiquelVega, Juan Antonio2021-07-072021-07-072021-06-281099-4300https://hdl.handle.net/2445/178913We consider a discrete-time random walk $(x_t)$ which at random times is reset to the starting position and performs a deterministic motion between them. We show that the quantity $\Pr \Big( x_{ t+1}= n+1 |x_{t}=n \Big), n\to \infty$ determines if the system is averse, neutral or inclined towards resetting. It also classifica the stationary distribution. Double barrier probabilities, first passage times and the distribution of the escape time from intervals are determined.1 p.application/pdfengcc-by (c) Villarroel, Javier et al., 2021https://creativecommons.org/licenses/by/4.0/Rutes aleatòries (Matemàtica)Distribució (Teoria de la probabilitat)Random walks (Mathematics)Distribution (Probability theory)A Semi-deterministic random walk with resettinginfo:eu-repo/semantics/article7130322021-07-07info:eu-repo/semantics/openAccess34203494