Cascante, Ma. Carme (Maria Carme)Fàbrega Casamitjana, JoanPascuas Tijero, Daniel2023-02-082023-02-0820201239-629Xhttps://hdl.handle.net/2445/193293We characterize the boundedness of Hankel bilinear forms on a product of generalized Fock-Sobolev spaces on $\mathbf{C}^n$ with respect to the weight $(1+|z|)^p e^{-\frac{\rho}{2}|*|^{2 t}}$, for $\ell \geq 1, \alpha>0$ and $\rho \in \mathbf{R}$. We obtain a weak decomposition of the Bergman kernel with estimates and a LittlewoodPaley formula, which are key ingredients in the proof of our main results. As an application, we characterize the boundedness, compactness and the membership in the Schatten class of small Hankel operators on these spaces.22 p.application/pdfeng(c) Academia Scientiarum Fennica, 2020Funcions de diverses variables complexesEspais analíticsFuncions holomorfesTeoria d'operadorsFunctions of several complex variablesAnalytic spacesHolomorphic functionsOperator theoryHankel Bilinear Forms on Generalized Fock-Sobolev Spaces on $C^n$info:eu-repo/semantics/article6999632023-02-08info:eu-repo/semantics/openAccess