Salamó Llorente, MariaAriza Casabona, AlejandroVall Hernàndez, Andreu2024-12-022024-12-022024-06-10https://hdl.handle.net/2445/216857Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2024, Director: Maria Salamó Llorente i Alejandro Ariza Casabona[en] Recommender Systems are increasingly becoming more and more part of our everyday life, from helping us choose what videos to watch to recommending news articles and friends. However, their architecture is really complex which makes it difficult to explain their suggestions. The goal of this project is to study in depth how does a Recommender System work, which generates automatically, in natural language, explanations on their recommendations. Furthermore, its details will be studied with different settings. It will be evaluated, analysed and discussed with different datasets.48 p.application/pdfengmemòria: cc-nc-nd (c) Andreu Vall Hernàndez, 2024codi: GPL (c) Andreu Vall Hernàndez, 2024http://creativecommons.org/licenses/by-nc-nd/3.0/es/http://www.gnu.org/licenses/gpl-3.0.ca.htmlSistemes d'ajuda a la decisióTractament del llenguatge natural (Informàtica)Aprenentatge automàticSistemes experts (Informàtica)ProgramariTreballs de fi de grauDecision support systemsNatural language processing (Computer science)Machine learningExpert systems (Computer science)Computer softwareBachelor's thesesSelf-explaining recommendationinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess