Castán i Vidal, Maria TeresaLindgård, Per-Anker2009-10-212009-10-2119900163-1829https://hdl.handle.net/2445/9747The kinetic domain-growth exponent is studied by Monte Carlo simulation as a function of temperature for a nonconserved order-parameter model. In the limit of zero temperature, the model belongs to the n=(1/4 slow-growth unversality class. This is indicative of a temporal pinning in the domain-boundary network of mixed-, zero-, and finite-curvature boundaries. At finite temperature the growth kinetics is found to cross over to the Allen-Cahn exponent n=(1/2. We obtain that the pinning time of the zero-curvature boundary decreases rapidly with increasing temperature.4 p.application/pdfeng(c) The American Physical Society, 1990Física de l'estat sòlidMecànica estadísticaSolid state physicsStatistical mechanicsn=1/4 domain-growth universality class: Crossover to the n=1/2 classinfo:eu-repo/semantics/article35439info:eu-repo/semantics/openAccess