Dyakonov, Konstantin M.2016-04-122016-04-121992-120002-9939https://hdl.handle.net/2445/97261It is proved that for each inner function $ \theta $ there exists an interpolating sequence $ \left\{ {{z_n}} \right\}$ in the disk such that $ {\sup _n}\vert\theta ({z_n})\vert < 1$, but every function $ g$ in $ {H^\infty }$ with $ g({z_n}) = \theta ({z_n})(n = 1,2, \ldots )$ satisfies $ \vert\vert g\vert{\vert _\infty } \geq 1$. Some results are obtained concerning interpolation in the star-invariant subspace $ {H^2} \ominus \theta {H^2}$. This paper also contains a 'geometric' result connected with kernels of Toeplitz operators.7 p.application/pdfeng(c) American Mathematical Society (AMS), 1992Funcions enteresFuncions meromorfesFuncions de variables complexesOperadors linealsTeoria d'operadorsEntire functionsMeromorphic functionsFunctions of complex variablesLinear operatorsOperator theoryInterpolating functions of minimal norm, star-invariant subspaces, and kernels of Toeplitz operatorsinfo:eu-repo/semantics/article5824212016-04-12info:eu-repo/semantics/openAccess