Cabaña, AlejandraCabaña, E. M.2020-03-042020-03-041996https://hdl.handle.net/2445/151977Preprint enviat per a la seva publicació en una revista científica: The Annals of Statistics. Volume 25, Number 6 (1997), 2388-2409. [https://projecteuclid.org/euclid.aos/1030741078]A general way of constructing classes of goodness-of-fit tests for multivariate samples is presented. These tests are based on a random signed measure that plays the same role as the empirical process in the construction of the classical Kolmogorov-Smirnov tests. The resulting tests are consistent against any fixed alternative, and, for each sequence of contiguous alternatives, a test in each class can be chosen so as to optimize the discrimination of those alternatives.26 p.application/pdfeng(c) Alejandra Cabaña et al., 1996Estadística no paramètricaAnàlisi asimptòticaTests d'hipòtesi (Estadística)Processos gaussiansUniversitat de Barcelona. Institut de MatemàticaTransformed empirical processes and modified Kolmogorov-Smirnov tests for multivariate distributionsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccess