Queralt i Capdevila, PilarFerrer Àvila, Miguel2017-11-032017-11-032017-06https://hdl.handle.net/2445/117383Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2017, Tutora : Pilar Queralt CapdevilaWave propagation simulations using numerical methods are subject to dispersion errors due to the discrete nature of the differentiation operator. To minimize the effects of dispersion, high-order operators are preferred to solve the wave propagation model. The mimetic finite-difference method is a family of fourth-order finite-difference operators which can be constructed by varying a set of six free parameters. In this work, I explore the effect of varying these parameters on the dispersion of elastic waves, in search of the optimal set of values to minimize this anomaly in a one-dimensional problem.5 p.application/pdfengcc-by-nc-nd (c) Ferrer, 2017http://creativecommons.org/licenses/by-nc-nd/3.0/es/Propagació d'onesDispersió (Física nuclear)Treballs de fi de grauWave propagationScattering (Nuclear physics)Bachelor's thesesDispersion analysis in wave propagation using parametrized mimetic finite differencesinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess