Baena i Miret, SergiVives i Santa Eulàlia, Josep, 1963-Puig i Casanovas, Natàlia2023-01-192023-01-192022-06-12https://hdl.handle.net/2445/192324Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Sergi Baena i Miret[en] In this project we will show and discuss the classification algorithms, specifically, for the breast cancer diagnosis. From a theoretical point of view, we will study and prove the basic results of multivariate analysis, such as: dimension theorem, properties of multivariate distributions and the necessary results of Principal Components Analysis (PCA) with their respectively proofs. Then, from a more practical point of view, we will present the observed data, understanding their meaning, studying their properties and the subsequent application of a PCA. Finally, using R programming language, we will apply the data to the classification algorithms Naive Bayes and Support Vector Machine, showing the results that they provide. As well as we will see a brief explanation of the K-NN algorithm.79 p..application/pdfcatcc-by-nc-nd (c) Natàlia Puig i Casanovas, 2022http://creativecommons.org/licenses/by-nc-nd/3.0/es/Anàlisi multivariableTreballs de fi de grauAnàlisi factorialAprenentatge automàticSistemes classificadors (Intel·ligència artificial)Multivariate analysisBachelor's thesesFactor analysisMachine learningLearning classifier systemsEstudi de l'aprenentatge automàtic per a la diagnosi del càncer de mamainfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess