Marro, Joaquín, 1945-Fernández Novoa, Julio F.González-Miranda, J. M. (Jesús Manuel)Puma, Marcello2011-07-072011-07-0719941063-651Xhttps://hdl.handle.net/2445/18898We study steady states in d-dimensional lattice systems that evolve in time by a probabilistic majority rule, which corresponds to the zero-temperature limit of a system with conflicting dynamics. The rule satisfies detailed balance for d=1 but not for d>1. We find numerically nonequilibrium critical points of the Ising class for d=2 and 3.4 p.application/pdfeng(c) American Physical Society, 1994Model d'IsingMecànica estadísticaIsing modelStatistical mechanicsIsing critical behavior of a non-Halmiltonian lattice systeminfo:eu-repo/semantics/article501967info:eu-repo/semantics/openAccess