Naranjo del Val, Juan CarlosBlanco Lara, Ana2022-09-072022-09-072022-06-13https://hdl.handle.net/2445/188737Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Juan Carlos Naranjo del Val[en] This memory presents basic notions and results about Riemann surfaces which are later seen applied in an analogous way in graphs. The analogy is given in divisors’ context, enunciating a version for graphs of the known Riemann-Roch Theorem. In addition, other results analogous to classical facts about Riemann surfaces theory are shown and proved, like the jacobian or the Abel-Jacobi map. Finally, the analogy with divisors is used for observing a possible application on a Chip-Firing game, a graphs’ game, making it possible to characterise the existence or non-existence of a winning strategy.49 p.application/pdfcatcc-by-nc-nd (c) Ana Blanco Lara, 2022http://creativecommons.org/licenses/by-nc-nd/3.0/es/Teoria de grafsTreballs de fi de grauSuperfícies de RiemannFuncions de variables complexesGraph theoryBachelor's thesesRiemann surfacesFunctions of complex variablesGrafs i superfícies de Riemanninfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess