Garofalo, NicolaRos, Xavier2023-02-232023-02-232019-06-050213-2230https://hdl.handle.net/2445/194048We study the singular part of the free boundary in the obstacle problem for the fractional Laplacian, $\min \left\{(-\Delta)^s u, u-\varphi\right\}=0$ in $\mathbb{R}^n$, for general obstacles $\varphi$. Our main result establishes the complete structure and regularity of the singular set. To prove it, we construct new monotonicity formulas of Monneau-type that extend those in those of Garofalo-Petrosyan to all $s \in(0,1)$.57 p.application/pdfeng(c) European Mathematical Society Publishing House, 2019Operadors diferencials parcialsTeoria d'operadorsEquacions en derivades parcialsProcessos estocĂ sticsPartial differential operatorsOperator theoryPartial differential equationsStochastic processesStructure and regularity of the singular set in the obstacle problem for the fractional Laplacianinfo:eu-repo/semantics/article7085732023-02-23info:eu-repo/semantics/openAccess