Gómez Serrano, JavierPark, JaeminShi, JiaYao, Yao2022-05-112022-05-112021-07-150010-3616https://hdl.handle.net/2445/185507In this paper, we show that the only solution of the vortex sheet equation, either stationary or uniformly rotating with negative angular velocity $\Omega$, such that it has positive vorticity and is concentrated in a finite disjoint union of smooth curves with finite length is the trivial one: constant vorticity amplitude supported on a union of nested, concentric circles. The proof follows a desingularization argument and a calculus of variations flavor.35 p.application/pdfengcc by (c) Gómez Serrano, Javier et al., 2021http://creativecommons.org/licenses/by/3.0/es/Mecànica de fluidsVòrtexsEquacions en derivades parcialsFluid mechanicsVortex-motionPartial differential equationsRemarks on stationary and uniformly-rotating vortex sheets: rigidity resultsinfo:eu-repo/semantics/article7224212022-05-11info:eu-repo/semantics/openAccess