Jarque i Ribera, Xavier2014-03-132014-03-1320110002-9939https://hdl.handle.net/2445/51504Let $ E_{\lambda}(z)=\lambda {\rm exp}(z), \lambda\in \mathbb{C}$, be the complex exponential family. For all functions in the family there is a unique asymptotic value at 0 (and no critical values). For a fixed $ \lambda$, the set of points in $ \mathbb{C}$ with orbit tending to infinity is called the escaping set. We prove that the escaping set of $ E_{\lambda}$ with $ \lambda$ Misiurewicz (that is, a parameter for which the orbit of the singular value is strictly preperiodic) is a connected set.9 p.application/pdfeng(c) American Mathematical Society (AMS), 2011DinàmicaFuncions holomorfesDinàmica topològicaDynamicsHolomorphic functionsTopological dynamicsOn the connectivity of the escaping set for complex exponential Misiurewicz parametersinfo:eu-repo/semantics/article6003172014-03-13info:eu-repo/semantics/openAccess