Massaneda Clares, Francesc XavierDalmau Ribas, Emma2023-05-252023-05-252023-01-21https://hdl.handle.net/2445/198463Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Francesc Xavier Massaneda Clares[en] Around the year 1924, Hungarian mathematician Gábor Szegő found that the zeros of the $n$th partial sums of the exponential series, rescaled by $n$, accumulate on the curve $S=\left\{z \in \overline{\mathbb{D}}:\left|e^{1-z} z\right|=1\right\}$. Not only that, but he showed that this zeros are uniformly distributed around $S$ according to the variation of the argument of the entire function $h(z)=e^{1-z} z$. In this thesis we show these results and other later discoveries that specify the velocity of convergence and the distance from the zeros to $S$.52 p.application/pdfcatcc-by-nc-nd (c) Emma Dalmau Ribas, 2023http://creativecommons.org/licenses/by-nc-nd/3.0/es/Teoria geomètrica de funcionsTreballs de fi de grauFuncions enteresGeometric function theoryBachelor's thesesEntire functionsLa corba de Szegőinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccess