Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarberán Falcón, Núria-
dc.contributor.authorDagnino, D.-
dc.contributor.authorGarcia-March, M. A.-
dc.contributor.authorTrombettoni, Andrea-
dc.contributor.authorTaron i Roca, Josep-
dc.contributor.authorLewenstein, M.-
dc.description.abstractWe analyze the role of impurities in the fractional quantum Hall effect using a highly controllable system of ultracold atoms. We investigate the mechanism responsible for the formation of plateaux in the resistivity/conductivity as a function of the applied magnetic field in the lowest Landau level regime. To this aim, we consider an impurity immersed in a small cloud of an ultracold quantum Bose gas subjected to an artificial magnetic field. We consider scenarios corresponding to experimentally realistic systems with gauge fields induced by rotation of the trapping parabolic potential. Systems of this kind are adequate to simulate quantum Hall effects in ultracold atom setups. We use exact diagonalization for few atoms and to emulate transport equations, we analyze the time evolution of the system under a periodic perturbation. We provide a theoretical proposal to detect the up-to-now elusive presence of strongly correlated states related to fractional filling factors in the context of ultracold atoms. We analyze the conditions under which these strongly correlated states are associated with the presence of the resistivity/conductivity plateaux. Our main result is the presence of a plateau in a region, where the transfer between localized and non-localized particles takes place, as a necessary condition to maintain a constant value of the resistivity/conductivity as the magnetic field increases.-
dc.format.extent11 p.-
dc.publisherInstitute of Physics Pub.-
dc.relation.isformatofReproducció del document publicat a:
dc.relation.ispartofNew Journal of Physics, 2015, vol. 17, p. 125009-
dc.rights(c) IOP Publishing Ltd and Deutsche Physikalische Gesellschaft, 2015-
dc.subject.classificationCàlcul fraccional-
dc.subject.classificationEfecte Hall quàntic-
dc.subject.classificationTransport biològic-
dc.subject.otherFractional calculus-
dc.subject.otherQuantum Hall effect-
dc.subject.otherBiological transport-
dc.titleQuantum simulation of conductivity plateaux and fractional quantum Hall effect using ultracold atoms-
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
655903.pdf499.38 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.