Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/100510
Title: Bone-Eating Worms Spread: Insights into Shallow-Water Osedax (Annelida, Siboglinidae) from Antarctic, Subantarctic, and Mediterranean Waters
Author: Taboada, Sergi
Riesgo, Ana
Bas, Maria
Arnedo Lombarte, Miquel Àngel
Cristobo, Javier
Rouse, Greg W.
Ávila Escartín, Conxita
Keywords: Anèl·lids
Mediterrània (Mar)
Antàrtic, Oceà
Annelida
Mediterranean Sea
Antarctic Ocean
Issue Date: 18-Nov-2015
Publisher: Public Library of Science (PLoS)
Abstract: Osedax, commonly known as bone-eating worms, are unusual marine annelids belonging to Siboglinidae and represent a remarkable example of evolutionary adaptation to a specialized habitat, namely sunken vertebrate bones. Usually, females of these animals live anchored inside bone owing to a ramified root system from an ovisac, and obtain nutrition via symbiosis with Oceanospirillales gamma-proteobacteria. Since their discovery, 26 Osedax operational taxonomic units (OTUs) have been reported from a wide bathymetric range in the Pacific, the North Atlantic, and the Southern Ocean. Using experimentally deployed and naturally occurring bones we report here the presence of Osedax deceptionensis at very shallow-waters in Deception Island (type locality; Antarctica) and at moderate depths near South Georgia Island (Subantarctic). We present molecular evidence in a new phylogenetic analysis based on five concatenated genes (28S rDNA, Histone H3, 18S rDNA, 16S rDNA, and cytochrome c oxidase I-COI-), using Maximum Likelihood and Bayesian inference, supporting the placement of O. deceptionensis as a separate lineage (Clade VI) although its position still remains uncertain. This phylogenetic analysis includes a new unnamed species (O. 'mediterranea') recently discovered in the shallow-water Mediterranean Sea belonging to Osedax Clade I. A timeframe of the diversification of Osedax inferred using a Bayesian framework further suggests that Osedax diverged from other siboglinids during the Middle Cretaceous (ca. 108 Ma) and also indicates that the most recent common ancestor of Osedax extant lineages dates to the Late Cretaceous (ca. 74.8 Ma) concomitantly with large marine reptiles and teleost fishes. We also provide a phylogenetic framework that assigns newly-sequenced Osedax endosymbionts of O. deceptionensis and O. 'mediterranea' to ribospecies Rs1. Molecular analysis for O. deceptionensis also includes a COI-based haplotype network indicating that individuals from Deception Island and the South Georgia Island (ca. 1,600 km apart) are clearly the same species, confirming the well-developed dispersal capabilities reported in other congeneric taxa. In addition, we include a complete description of living features and morphological characters (including scanning and transmission electron microscopy) of O. deceptionensis, a species originally described from a single mature female, and compare it to information available for other congeneric OTUs.
Note: Reproducció del document publicat a: http://dx.doi.org/10.1371/journal.pone.0140341
It is part of: PLoS One, 2015, vol. 10, num. 11, p. e0140341
Related resource: http://dx.doi.org/10.1371/journal.pone.0140341
URI: http://hdl.handle.net/2445/100510
ISSN: 1932-6203
Appears in Collections:Articles publicats en revistes (Biologia Evolutiva, Ecologia i Ciències Ambientals)
Articles publicats en revistes (Institut de Recerca de la Biodiversitat (IRBio))

Files in This Item:
File Description SizeFormat 
656727.pdf15.03 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons