Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/101339
Title: Biotechnological approaches to cardiac differentiation of human induced pluripotent stem cells
Author: Di Guglielmo, Claudia
Director: Raya Chamorro, Ángel
Keywords: Cardiologia
Bioenginyeria
Cèl·lules mare
Cor
Bioengineering
Stem cells
Heart
Cardiology
Issue Date: 9-Feb-2016
Publisher: Universitat de Barcelona
Abstract: [eng] The heart can be considered the most important organ of our body, as it supplies nutrients to all the cells. When affected from injuries or diseases, the heart function is hampered, as the damaged area is substituted by a fibrotic scar instead of functional tissue. Understanding the mechanisms leading to heart failure and finding a cure for cardiac diseases represents a major challenge of modern medicine, since they are the leading cause of death and disability in Western world. Being the heart a vital organ it is difficult to have access to its cells, especially in humans. In order to model it or find therapeutic strategies many approaches and cell sources have been studied. For example cardiac stem cells, skeletal myoblasts, bone marrow-derived cells and peripheral blood mononuclear cells have been tested in pre-clinical and clinical trials, without significant tissue regeneration. Human pluripotent stem cells (hPSC) are thought to be the most promising cell type in the field, thanks to their unlimited capacity of self-renewal and retention of differentiation potency. Induced pluripotent stem cells (iPSC) are pluripotent cells derived through reprogramming from adult cells, easily accessible from patients, like keratinocytes. iPSC can be differentiated to cardiac cells, through stage-specific protocols that reproduce embryonic development, offering a very useful platform for modelling diseases of patients with heart failure, for testing new drugs, and for cellular therapy in the future. However, properly mimicking cardiac tissue is very complex, since not only the correct cardiac cell type has to be reproduced, but also its overall cellular composition, architecture and biophysical functions. In order to study these aspects, we applied biotechnological strategies such as the use of transgenic cell lines for obtaining pure and scalable differentiated cells to be cultured in a 3D scaffold with a perfusion bioreactor. Although it is well known that iPSC can give rise to cardiomyocytes in vitro, not every cell line can be efficiently differentiated. Thus, a cell line-specific differentiation protocol has to be identified and optimized. We finally identified a fast and efficient stage-specific differentiation protocol suitable for the iPSC lines used in this work, derived from human keratinocytes. With this protocol, we can reproducibly obtain close to 50% cardiomyocytes after 15 days of differentiation. One important feature of currently available differentiation protocols is that the target cell type is obtained among a heterogeneous cell population. To track the cardiac population of interest we generated transgenic cell lines where the reporter protein GFP follows the expression of different genes specific for stages of differentiation, such as T (Brachyury) for mesoderm; NKX2.5 for cardiac progenitors; and MHC for cardiomyocytes. Moreover, cardiomyocytes obtained from hPSC using currently available differentiation protocols are typically immature, mostly resembling embryonic or fetal cardiomyocytes, arguably because of the lack of mechanical and electrical stimuli that only a 3D environment can provide. In order to create a piece of tissue in 3D we used a collagen and elastin-based scaffold, to mimic the structural proteins of endogenous extracellular matrix. We also built a perfusion bioreactor to culture the construct. After initial validation with primary cultures of rat neonatal cardiomyocytes, we tested iPSC-derived cardiac cells at different stages of differentiation. While early mesoderm or cardiac progenitors could not survive in our system, iPSC differentiated to cardiomyocytes, could be retained and maintained alive within the scaffold for at least 4 days. In conclusion, in this work we combined biotechnological tools in order to obtain a test platform for studying the mechanisms underlying cardiac differentiation, maturation, as well as providing valuable in vitro systems for disease modelling, drug screening of patient-specific heart muscle cells and cell therapy.
[spa] El corazón es el órgano más importante del cuerpo: impulsando la sangre, aporta oxigeno y nutrientes a cada célula del organismo. En caso de fallo cardiaco la función del corazón no puede recuperarse, ya que los cardiomiocitos son reemplazados por una cicatriz fibrosa no funcional. Las enfermedades cardiacas representan la mayor causa de muerte y enfermedad en el mundo occidental y entender los mecanismos de las patologías cardiacas, así como encontrar curas para ellas, es un desafío de primaria importancia para la medicina moderna. Siendo el corazón un órgano vital y difícilmente accesible, resulta imprescindible encontrar una fuente celular alternativa. Las células madre humanas con pluripotencia inducida (iPSC – induced pluripotent stem cells) parecen óptimas, porque se derivan de simples biopsias de piel de pacientes y se pueden diferenciar a cualquier tipo celular, cardiomiocitos incluidos. Aún así, diferenciar el tejido cardiaco es muy complejo: no solamente se debe de reproducir el tipo celular, sino también su composición celular, su arquitectura y sus funciones biofísicas. Para estudiar estos aspectos, por un lado obtuvimos tres líneas celulares de iPSC reporteras de genes específicos de diferentes estadios de diferenciación cardiaca (T para mesodermo, NKX2.5 para progenitores cardiacos y alpha-MHC para cardiomiocitos), y por otro desarrollamos un biorreactor adecuado para el cultivo de células cardiacas en 3D. Utilizamos las líneas transgénicas como herramienta para seleccionar células en diferentes estadios de diferenciación y las co-cultivamos con fibroblastos en un andamio compuesto de colágeno y elastina (imitando la matriz extracelular cardiaca y la composición celular del corazón). En conjunto, este estudio revela que las iPSC pueden ser retenidas y cultivadas en nuestro sistema 3D. Mientras células de mesodermo temprano y progenitores cardiacos no completaron la diferenciación cardiaca, los cardiomiocitos derivados de iPSC con cultivo convencional y cultivados en el biorreactor pudieron ser mantenidos viables en el mismo al menos 4 días. La aproximación experimental aquí presentada representa una base para desarrollar plataformas de estudio in vitro paciente-especificas para modelar enfermedades cardiacas humanas y estudios de fármacos, así como ofrecer una herramienta de estudio de los mecanismos de la diferenciación y maduración cardiacas.
URI: http://hdl.handle.net/2445/101339
Appears in Collections:Tesis Doctorals - Facultat - Farmàcia

Files in This Item:
File Description SizeFormat 
CDG_PhD_THESIS.pdf47.52 MBAdobe PDFView/Open
video4.1.mov4.98 MBVideo QuicktimeView/Open
video4.2.mov4.7 MBVideo QuicktimeView/Open
video4.3.mov6.7 MBVideo QuicktimeView/Open
video4.4.avi56.28 MBUnknownView/Open
video4.5.avi41.55 MBUnknownView/Open
video4.6.avi9.23 MBUnknownView/Open
video4.7.avi7.44 MBUnknownView/Open
video4.8.avi6.97 MBUnknownView/Open
video4.9.avi8.05 MBUnknownView/Open
video4.10.mov10.81 MBVideo QuicktimeView/Open
video4.11.mov1.84 MBVideo QuicktimeView/Open
video4.12.avi23.77 MBUnknownView/Open
video4.13.avi16.32 MBUnknownView/Open
video4.14.avi2.01 MBUnknownView/Open
video4.15.mov4.2 MBVideo QuicktimeView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.