Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/106603
Title: A posteriori ratemaking using bivariate Poisson models
Author: Bermúdez, Lluís
Karlis, Dimitris
Keywords: Models lineals (Estadística)
Assegurances d'automòbils
Variables (Matemàtica)
Anàlisi de regressió
Linear models (Statistics)
Automobile insurance
Variables (Mathematics)
Regression analysis
Issue Date: Feb-2017
Publisher: Taylor and Francis
Abstract: Recently, different bivariate Poisson regression models have been used in the actuarial literature to make an a priori ratemaking taking into account the dependence between two types of claims. A natural extension for these models is to consider a posteriori ratemaking (i.e. experience rating models) that also relaxes the independence assumption. We introduce here two bivariate experience rating models that integrate the a priori ratemaking based on the bivariate Poisson regression models, extending the existing literature for the univariate case to the bivariate case. These bivariate experience rating models are applied to an automobile insurance claims data-set to analyse the consequences for posterior premiums when the independence assumption is relaxed. The main finding is that the a posteriori risk factors obtained with the bivariate experience rating models are significantly lower than those factors derived under the independence assumption.
Note: Versió postprint del document publicat a: https://doi.org/10.1080/03461238.2015.1094403
It is part of: Scandinavian Actuarial Journal, 2017, vol. 2017, num. 2, p. 148-158
Related resource: https://doi.org/10.1080/03461238.2015.1094403
URI: http://hdl.handle.net/2445/106603
ISSN: 0346-1238
Appears in Collections:Articles publicats en revistes (Matemàtica Econòmica, Financera i Actuarial)

Files in This Item:
File Description SizeFormat 
661782.pdf299.18 kBAdobe PDFView/Open    Request a copy


Embargat   Document embargat fins el 31-8-2018


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.