Please use this identifier to cite or link to this item:
Title: Cage Active Contours for image warping and morphing
Author: Carandell, Jeroni
Garrido Ostermann, Lluís
Igual Muñoz, Laura
Keywords: Infografia
Simulació per ordinador
Computer graphics
Computer science
Computer simulation
Issue Date: Feb-2018
Abstract: Cage Active Contours (CACs) have shown to be a framework for segmenting connected objects using a new class of parametric region-based active contours. The CAC approach deforms the contour locally by moving cage's points through affine transformations. The method has shown good performance for image segmentation, but other applications have not been studied. In this paper, we extend the method with new energy functions based on Gaussian mixture models to capture multiple color components per region and extend their applicability to RGB color space. In addition, we provide an extended mathematical formalization of the CAC framework with the purpose of showing its good properties for segmentation, warping, and morphing. Thus, we propose a multiple-step combined method for segmenting images, warping the correspondences of the object cage points, and morphing the objects to create new images. For validation, both quantitative and qualitative tests are used on different datasets. The results show that the new energies produce improvements over the previously developed energies for the CAC. Moreover, we provide examples of the application of the CAC in image segmentation, warping, and morphing supported by our theoretical conclusions.
It is part of: Eurasip Journal On Image And Video Processing, 2018, vol. 2018:10
Related resource:
ISSN: 1687-5281
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
677031.pdf3.31 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons