Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/121133
Title: On the proof of the upper bound theorem
Author: Dediu, Catalin
Director/Tutor: Zarzuela, Santiago
Keywords: Àlgebra commutativa
Anells commutatius
Treballs de fi de màster
Geometria combinatòria
Commutative algebra
Commutative rings
Master's theses
Combinatorial geometry
Issue Date: 9-Sep-2017
Abstract: [en] Let $\Delta$ be a triangulation of a $(d - 1)$-dimensional sphere with $n$ vertices. The Upper Bound Conjecture (UBC for short) gives an explicit bound of the number of $i$-dimensional faces of $\Delta$. This question dates back to the beginning of the 1950’s, when the study of the efficiency of some linear programming techniques led to the following problem: Determine the maximal possible number of $i$-faces of d-polytope with $n$ vertices. The first statement of the UBC was formulated in 1957 by Theodore Motzkin. The original result state that the number of $i$-dimensional faces of a $d$-dimensional polytope with n vertices are bound by a certain explicit number $f i (C(n, d))$ where $C(n, d)$ is a cyclic polytope and $f_{i}$ denotes the number of $i$-dimensional faces of the simplex. We say that $P$ is a polytope if it is the convex hull of a finite set of points in $\mathbb{R}^{d}$. Moreover, we say that $C(n, d)$ is a cyclic polytope if it is the convex hull of n distinct points on the moment curve $(t, t^{2},..., t{^d})$, $-\infty<t<\infty$. With this notation the Upper Bound Conjecture (for convex polytopes) states that cyclic polytope maximizes the number of $i$-dimensional faces among all polytopes.
Note: Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2017, Director: Santiago Zarzuela
URI: http://hdl.handle.net/2445/121133
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria829.89 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons