Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCorcuera Valverde, José Manuel-
dc.contributor.authorPuig Cortada, Matias-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: José Manuel Corcuera Valverdeca
dc.description.abstract[en] The main goal of this work is to introduce the stochastic volatility models in mathematical finance and to develop a closed-form solution to option pricing in Heston’s stochastic volatiltiy model, following the arguments in Heston 1993. No background in mathematical finance will be assumed, so another main goal of this work is to develop the theory of stochastic integration and to introduce the Black-Scholes market model, the benchmark model in mathematical finance. Standard topics in the framework of market models, such as trading strategies, completeness and replication, and the notion of arbitrage, will also be
dc.format.extent54 p.-
dc.rightscc-by-nc-nd (c) Matias Puig Cortada, 2017-
dc.subject.classificationMatemàtica financera-
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationProcessos estocàsticsca
dc.subject.classificationArbitratge (Economia)ca
dc.subject.otherBusiness mathematics-
dc.subject.otherBachelor's thesis-
dc.subject.otherStochastic processesen
dc.titleAn introduction to stochastic volatility modelsca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria600.26 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons