Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorArrondo, Enrique-
dc.contributor.advisorMiró-Roig, Rosa M. (Rosa Maria)-
dc.contributor.authorPons Llopis, Joan-
dc.contributor.otherUniversitat de Barcelona. Departament d'Àlgebra i Geometria-
dc.description.abstract[eng] The subject of this thesis lies at the junction of mainly three topics: construction of large families of Arithmetically Cohen-Macaulay indecomposable vector bundles on a given projective variety X, the shape (i.e, the graded Betti numbers) of the minimal free resolution of a general set of points onX and the (ir)reducibility of the Hilbert scheme Hilbs(X) of zero-dimensional subschemes Z (belongs) X of length s. (Fore more details see the Full Summary enclosed as a complementary file)-
dc.format.extent162 p.-
dc.publisherUniversitat de Barcelona-
dc.rights(c) Pons, 2011-
dc.subject.classificationMòduls de Cohen-Macaulay-
dc.subject.classificationEsquemes de Hilbert-
dc.subject.otherCohen-Macaulay modules-
dc.subject.otherHilbert schemes-
dc.titleUlrich bundles and varieties of wild representation type-
Appears in Collections:Tesis Doctorals - Departament - Algebra i Geometria

Files in This Item:
File Description SizeFormat 
JPLL_FULL SUMMARY.pdf130.38 kBAdobe PDFView/Open
JPLL_PhD-THESIS.pdf845.85 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.