Please use this identifier to cite or link to this item:
Title: Deducción y estudio teórico y computacional de las ecuaciones que determinan la dinámica de un fluido
Author: Martı́nez Lahuerta, Vı́ctor José
Director/Tutor: Mas Blesa, Albert
Keywords: Equacions de Navier-Stokes
Treballs de fi de grau
Dinàmica de fluids
Equacions en derivades parcials
Anàlisi numèrica
Navier-Stokes equations
Bachelor's thesis
Fluid dynamics
Partial differential equations
Numerical analysis
Issue Date: 19-Jan-2018
Abstract: [en] This work revolves on Navier-Stokes equations. In a first part, we investigate the conservation laws of mass and momentum in order to deduce the partial differential equations that governs Newtonian fluids dynamics. The distinction between a com- pressible/incompressible fluid is treated and some elementary examples, such as the ideal fluids, are also considered. In a second part we apply numerical methods to solve some 2-dimensional problems on partial differential equations, starting from a simple one on the heat equation and finishing with one on Navier-Stokes equations.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Albert Mas Blesa
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria1.56 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons