Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/12532
Title: Rigorous extension of the proof of zeta-function regularization
Author: Elizalde, E. (Emili), 1950-
Romeo, A.
Keywords: Teoria de camps (Física)
Funcions zeta
Field theory (Physics)
Zeta functions
Issue Date: 1989
Publisher: The American Physical Society
Abstract: The proof of $\ensuremath{\zeta}$-function regularization of high-temperature expansions, a technique which provides correct results for many field-theoretical quantities of interest, is known to fail, however, in the case of "Epstein-type" expressions such as $\ensuremath{\Sigma}{{n}_{1},\dots{},{n}_{N}=1}^{\ensuremath{\infty}}{(\ensuremath{\Sigma}{j=1}^{N}{a}_{j}{n}_{j}^{\ensuremath{\alpha}})}^{\ensuremath{-}s}$, $\ensuremath{\alpha}=2, 4, \dots{}$. After showing where precisely the existing demonstration breaks down, we provide a new proof of this regularization valid for a wider range of the parameter $\ensuremath{\alpha}$. The extra terms are calculated explicitly for any value of $\ensuremath{\alpha}\ensuremath{\le}2$. As an application, we provide the finite results corresponding to the $\ensuremath{\zeta}$-function regularization of expressions associated with field theories evaluated in partially compactified, toroidal spacetimes of the form ${\mathrm{T}}^{p}\ifmmode\times\else\texttimes\fi{}{\mathrm{R}}^{q+1}$.
Note: Reproducció digital del document publicat en format paper, proporcionada per PROLA i http://dx.doi.org/10.1103/PhysRevD.40.436
It is part of: Physical Review D, 1989, vol. 40, núm, 2, p. 436-443
Related resource: http://doi.org/10.1103/PhysRevD.40.436
URI: http://hdl.handle.net/2445/12532
ISSN: 0556-2821
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
73462.pdf914.96 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.