Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/125805
Title: El problema del nombre de classes 1
Author: Garcia Tarrach, Guillem
Director: Travesa i Grau, Artur
Keywords: Teoria algebraica de nombres
Treballs de fi de grau
Anells (Àlgebra)
Teoria de cossos de classe
Corbes el·líptiques
Formes quadràtiques
Algebraic number theory
Bachelor's thesis
Rings (Algebra)
Class field theory
Elliptic curves
Quadratic forms
Issue Date: 27-Jun-2018
Abstract: [en] The ring of integers is a unique factorization domain, but, in general, this isn’t the case for the ring of integers of a number field. The class number 1 problem consists in giving a complete list of all imaginary quadratic fields whose ring of integers is a unique factorization domain. In this thesis we provide an adaptation of Kurt Heegner’s original solution including an overview of the required theoretical tools, namely class field theory and the theory of elliptic curves with complex multiplication.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Artur Travesa i Grau
URI: http://hdl.handle.net/2445/125805
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria472.86 kBAdobe PDFView/Open
Codi font.zipCodi font1.2 kBzipView/Open


This item is licensed under a Creative Commons License Creative Commons