Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/128491
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSantos Pérez, Isaac-
dc.contributor.authorOksanen, Hanna M.-
dc.contributor.authorBamford, Dennis H.-
dc.contributor.authorGoñi, Felix M.-
dc.contributor.authorReguera, D. (David)-
dc.contributor.authorAbrescia, Nicola G. A.-
dc.date.accessioned2019-02-20T11:09:04Z-
dc.date.available2019-02-20T11:09:04Z-
dc.date.issued2017-03-01-
dc.identifier.issn0304-4165-
dc.identifier.urihttp://hdl.handle.net/2445/128491-
dc.description.abstractGenome packaging and delivery are fundamental steps in the replication cycle of all viruses. Icosahedral viruses with linear double-stranded DNA (dsDNA) usually package their genome into a preformed, rigid procapsid using the power generated by a virus-encoded packaging ATPase. The pressure and stored energy due to this confinement of DNA at a high density is assumed to drive the initial stages of genome ejection. Membrane-containing icosahedral viruses, such as bacteriophage PRD1, present an additional architectural complexity by enclosing their genome within an internal membrane vesicle. Upon adsorption to a host cell, the PRD1 membrane remodels into a proteo-lipidic tube that provides a conduit for passage of the ejected linear dsDNA through the cell envelope. Based on volume analyses of PRD1 membrane vesicles captured by cryo-electron tomography and modeling of the elastic properties of the vesicle, we propose that the internal membrane makes a crucial and active contribution during infection by maintaining the driving force for DNA ejection and countering the internal turgor pressure of the host. These novel functions extend the role of the PRD1 viral membrane beyond tube formation or the mere physical confinement of the genome. The presence and assistance of an internal membrane might constitute a biological advantage that extends also to other viruses that package their linear dsDNA to high density within an internal vesicle.-
dc.format.extent9 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.bbagen.2016.12.013-
dc.relation.ispartofBiochimica et Biophysica Acta-General Subjects, 2017, vol. 1861, num. 3, p. 664-672-
dc.relation.urihttps://doi.org/10.1016/j.bbagen.2016.12.013-
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2017-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationVirus ADN-
dc.subject.classificationGenomes-
dc.subject.classificationTomografia-
dc.subject.classificationVirus-
dc.subject.classificationMembranes lipídiques-
dc.subject.otherDNA viruses-
dc.subject.otherGenomes-
dc.subject.otherTomography-
dc.subject.otherViruses-
dc.subject.otherLipid membranes-
dc.titleMembrane-Assisted Viral DNA Ejection-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec670292-
dc.date.updated2019-02-20T11:09:04Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid27993658-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
670292.pdf901.54 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons