Please use this identifier to cite or link to this item:
Title: Producing 3D biomimetic nanomaterials for musculoskeletal system regeneration
Author: Casanellas, Ignasi
García Lizarribar, Andrea
Lagunas, Anna
Samitier i Martí, Josep
Keywords: Enginyeria de teixits
Aparell locomotor
Materials nanoestructurats
Tissue engineering
Musculoskeletal system
Nanostructured materials
Issue Date: 20-Sep-2018
Publisher: Frontiers Media
Abstract: The human musculoskeletal system is comprised mainly of connective tissues such as cartilage, tendon, ligaments, skeletal muscle, and skeletal bone. These tissues support the structure of the body, hold and protect the organs, and are responsible of movement. Since it is subjected to continuous strain, the musculoskeletal system is prone to injury by excessive loading forces or aging, whereas currently available treatments are usually invasive and not always effective. Most of the musculoskeletal injuries require surgical intervention facing a limited post-surgery tissue regeneration, especially for widespread lesions. Therefore, many tissue engineering approaches have been developed tackling musculoskeletal tissue regeneration. Materials are designed to meet the chemical and mechanical requirements of the native tissue three-dimensional (3D) environment, thus facilitating implant integration while providing a good reabsorption rate. With biological systems operating at the nanoscale, nanoengineered materials have been developed to support and promote regeneration at the interprotein communication level. Such materials call for a great precision and architectural control in the production process fostering the development of new fabrication techniques. In this mini review, we would like to summarize the most recent advances in 3D nanoengineered biomaterials for musculoskeletal tissue regeneration, with especial emphasis on the different techniques used to produce them.
Note: Reproducció del document publicat a:
It is part of: Frontiers in Bioengineering and Biotechnology, 2018, vol. 6
Related resource:
ISSN: 2296-4185
Appears in Collections:Articles publicats en revistes (Electrònica)

Files in This Item:
File Description SizeFormat 
685897.pdf1.7 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons