Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/141108
Title: Allele balance bias identifies systematic genotyping errors and false disease associations
Author: Muyas, Francesc
Bosio, Mattia
Puig, Anna
Susak, Hana
Domènech, Laura
Escaramis, Georgia
Zapata, Luis
Demidov, German
Estivill, Xavier, 1955-
Rabionet Janssen, Raquel
Ossowski, Stephan
Keywords: Biologia computacional
Genètica
Computational biology
Genetics
Issue Date: 24-Oct-2018
Publisher: Wiley
Abstract: In recent years, next‐generation sequencing (NGS) has become a cornerstone of clinical genetics and diagnostics. Many clinical applications require high precision, especially if rare events such as somatic mutations in cancer or genetic variants causing rare diseases need to be identified. Although random sequencing errors can be modeled statistically and deep sequencing minimizes their impact, systematic errors remain a problem even at high depth of coverage. Understanding their source is crucial to increase precision of clinical NGS applications. In this work, we studied the relation between recurrent biases in allele balance (AB), systematic errors, and false positive variant calls across a large cohort of human samples analyzed by whole exome sequencing (WES). We have modeled the AB distribution for biallelic genotypes in 987 WES samples in order to identify positions recurrently deviating significantly from the expectation, a phenomenon we termed allele balance bias (ABB). Furthermore, we have developed a genotype callability score based on ABB for all positions of the human exome, which detects false positive variant calls that passed state‐of‐the‐art filters. Finally, we demonstrate the use of ABB for detection of false associations proposed by rare variant association studies. Availability: https://github.com/Francesc-Muyas/ABB.
Note: Versió postprint del document publicat a: https://doi.org/10.1002/humu.23674
It is part of: Human Mutation, 2018, vol. 40, num. 1, p. 115-116
URI: http://hdl.handle.net/2445/141108
Related resource: https://doi.org/10.1002/humu.23674
ISSN: 1059-7794
Appears in Collections:Articles publicats en revistes (Genètica, Microbiologia i Estadística)

Files in This Item:
File Description SizeFormat 
686308.pdf1.29 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.