Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/143059
On the Xiao conjecture for plane curves
Títol de la revista
ISSN de la revista
Títol del volum
Resum
Let f:S⟶B be a non-trivial fibration from a complex projective smooth surface S to a smooth curve B of genus b. Let cf the Clifford index of the general fibre F of f. In Barja et al. (Journal für die reine und angewandte Mathematik, 2016) it is proved that the relative irregularity of f, qf=h1,0(S)−b is less or equal than or equal to g(F)−cf . In particular this proves the (modified) Xiao's conjecture: qf≤g(F)2+1 for fibrations of general Clifford index. In this short note we assume that the general fiber of f is a plane curve of degree d≥5 and we prove that qf≤g(F)−cf−1 . In particular we obtain the conjecture for families of quintic plane curves. This theorem is implied for the following result on infinitesimal deformations: let F a smooth plane curve of degree d≥5 and let ξ be an infinitesimal deformation of F preserving the planarity of the curve. Then the rank of the cup-product map H0(F,ωF)⟶⋅ξH1(F,OF) is at least d−3 . We also show that this bound is sharp.
Descripció
Matèries
Matèries (anglès)
Citació
Citació
FAVALE, F., NARANJO DEL VAL, Juan carlos, PIROLA, Gian pietro. On the Xiao conjecture for plane curves. _Geometriae Dedicata_. 2018. Vol. 195, núm. 1, pàgs. 193-201. [consulta: 26 de novembre de 2025]. ISSN: 0046-5755. [Disponible a: https://hdl.handle.net/2445/143059]