Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/146560
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLima, J. A. S.-
dc.contributor.authorBasilakos, Spyros-
dc.contributor.authorSolà Peracaula, Joan-
dc.date.accessioned2019-12-12T10:35:04Z-
dc.date.available2019-12-12T10:35:04Z-
dc.date.issued2016-04-25-
dc.identifier.issn1434-6044-
dc.identifier.urihttp://hdl.handle.net/2445/146560-
dc.description.abstractThe thermal history of a large class of running vacuum models in which the effective cosmological term is described by a truncated power series of the Hubble rate, whose dominant term is Λ(H)∝Hn+2, is discussed in detail. Specifically, by assuming that the ultrarelativistic particles produced by the vacuum decay emerge into space-time in such a way that its energy density ρr∝T4, the temperature evolution law and the increasing entropy function are analytically calculated. For the whole class of vacuum models explored here we find that the primeval value of the comoving radiation entropy density (associated to effectively massless particles) starts from zero and evolves extremely fast until reaching a maximum near the end of the vacuum decay phase, where it saturates. The late-time conservation of the radiation entropy during the adiabatic FRW phase also guarantees that the whole class of running vacuum models predicts the same correct value of the present day entropy, S0∼1087-1088 (in natural units), independently of the initial conditions. In addition, by assuming Gibbons-Hawking temperature as an initial condition, we find that the ratio between the late-time and primordial vacuum energy densities is in agreement with naive estimates from quantum field theory, namely, ρΛ0/ρΛI∼10−123. Such results are independent on the power n and suggests that the observed Universe may evolve smoothly between two extreme, unstable, non-singular de Sitter phases.-
dc.format.extent9 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSocietà Italiana di Fisica & Springer Verlag-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1140/epjc/s10052-016-4060-6-
dc.relation.ispartofEuropean Physical Journal C, 2016, vol. 76, num. 228-
dc.relation.urihttps://doi.org/10.1140/epjc/s10052-016-4060-6-
dc.rightscc-by (c) Lima, J. A. S. et al., 2016-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)-
dc.subject.classificationFísica de partícules-
dc.subject.classificationTeoria del funcional de densitat-
dc.subject.otherParticle physics-
dc.subject.otherDensity functionals-
dc.titleThermodynamical aspects of running vacuum models-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec661862-
dc.date.updated2019-12-12T10:35:04Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)
Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB))

Files in This Item:
File Description SizeFormat 
661862.pdf587.53 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons