Please use this identifier to cite or link to this item:
Title: Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid 4He
Author: Mateo Valderrama, David
Eloranta, Jussi
Williams, Gary A.
Keywords: Vòrtexs
Teoria del funcional de densitat
Density functionals
Issue Date: 1-Feb-2015
Publisher: American Institute of Physics
Abstract: The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He+3, He* (3S), He2∗ (3Σu), and e−) with quantized rectilinear vortex lines in superfluid 4He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He
Note: Reproducció del document publicat a:
It is part of: Journal of Chemical Physics, 2015, vol. 142, p. 064510
Related resource:
ISSN: 0021-9606
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
670607.pdf751.4 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.