Please use this identifier to cite or link to this item:
Title: Surgery on Herman rings of the complex standard family
Author: Geyer, Lukas
Fagella Rabionet, Núria
Keywords: Sistemes dinàmics de baixa dimensió
Sistemes dinàmics complexos
Low-dimensional dynamical systems
Complex dynamical systems
Issue Date: Apr-2003
Publisher: Cambridge University Press
Abstract: We consider the standard family (or Arnold family) of circle maps given by f_{\alpha, \beta}(x)=x + \alpha + \beta \sin(x) \pmod{2\pi}, for x,\alpha\in [0,2\pi), \beta \in (0,1) and its complexification F_{\alpha,\beta}(z)=z e^{i\alpha} \exp [\frac12\beta(z-\frac{1}{z})]. If f_{\alpha,\beta} is analytically linearizable, there is a Herman ring around the unit circle in the dynamical plane of F_{\alpha,\beta}. Given an irrational rotation number \theta, the parameters (\alpha,\beta) such that f_{\alpha, \beta} has rotation number \theta form a curve T_\theta in the parameter plane. Using quasi-conformal surgery of the simplest type, we show that if \theta is a Brjuno number, the curve T_\theta can be parametrized real-analytically by the modulus of the Herman ring, from \beta=0 up to a point (\alpha_0,\beta_0) with \beta_0 \leq 1, for which the Herman ring collapses. Using a result of Herman and a construction in I. N. Baker and P. Domínguez (Complex Variables37 (1998), 67-98) we show that for a certain set of angles \theta \in \mathcal{B} \setminus \mathcal{H}, the point \beta_0 is strictly less than 1 and, moreover, the boundary of the Herman rings with the corresponding rotation number have two connected components which are quasi-circles, and do not contain any critical point. For rotation numbers of constant type, the boundary consists of two quasi-circles, each containing one of the two critical points of F_{\alpha, \beta}.
Note: Reproducció del document publicat a:
It is part of: Ergodic Theory and Dynamical Systems, 2003, vol. 23, num. 2, p. 493-508
Related resource:
ISSN: 0143-3857
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
501828.pdf206.15 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.