Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/167318
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMárquez, Ana A.-
dc.contributor.authorSirés Sadornil, Ignacio-
dc.contributor.authorBrillas, Enric-
dc.contributor.authorNava, José L.-
dc.date.accessioned2020-07-02T09:17:29Z-
dc.date.available2022-06-23T05:10:21Z-
dc.date.issued2020-06-23-
dc.identifier.issn0045-6535-
dc.identifier.urihttp://hdl.handle.net/2445/167318-
dc.description.abstractThis work addresses the mineralization of the widely used Methyl Orange (MO) azo dye by technologies based on H2O2 electrogeneration at a 3D-like air-diffusion cathode. These include two Fe2+-catalyzed processes such as electro-Fenton (EF) and photoelectro-Fenton (PEF). Bulk electrolyses were performed in a recirculation flow plant, in which the Eco-Cell filter-press electrochemical reactor was connected in series with a UVA photoreactor. The former reactor was equipped with a Ti|Ir-Sn-Sb oxide plate anode alongside a 3D-like air-diffusion cathode made from graphite felt and hydrophobized carbon cloth, aimed at electrogenerating H2O2 on site. The influence of current density (j), volumetric flow rate (Q) and initial MO concentration was examined. The greatest oxidation power corresponded to PEF process. The best operation conditions to treat 30 mg L-1 of total organic carbon of MO in a 50 mM Na2SO4 solution by PEF were found at 0.50 mM Fe2+, pH 3.0, j = 20 mA cm-2 and Q = 2.0 L min-1, obtaining 100% and 94% of color and TOC removals at 240-300 min, respectively. This accounted for 35% of mineralization current efficiency and 0.12 kWh (g TOC)-1 of energy consumption at the end of the electrolysis. The oxidation power of EF and PEF was compared with that of anodic oxidation (AO), and the sequence obtained was: PEF > EF > AO. The dye was gradually degraded, yielding non-toxic short carboxylic acids, like maleic, fumaric, formic, oxalic and oxamic, whose Fe(III) complexes were rapidly photolyzed.-
dc.format.extent32 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier Ltd-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.chemosphere.2020.127466-
dc.relation.ispartofChemosphere, 2020, vol. 259, num. 127466-
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2020.127466-
dc.rightscc-by-nc-nd (c) Elsevier Ltd, 2020-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es-
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)-
dc.subject.classificationDepuració d'aigües residuals-
dc.subject.classificationOxidació electroquímica-
dc.subject.otherPurification of sewage-
dc.subject.otherElectrolytic oxidation-
dc.titleMineralization of Methyl Orange azo dye by processes based on H2O2 electrogeneration at a 3D-like air-diffusion cathode-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec702266-
dc.date.updated2020-07-02T09:17:29Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
702266.pdf1.15 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons