Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/168537
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMena, José-
dc.contributor.authorPujol Vila, Oriol-
dc.contributor.authorVitrià i Marca, Jordi-
dc.date.accessioned2020-07-14T07:18:54Z-
dc.date.available2020-07-14T07:18:54Z-
dc.date.issued2020-05-21-
dc.identifier.issn2169-3536-
dc.identifier.urihttp://hdl.handle.net/2445/168537-
dc.description.abstractMachine Learning as a Service platform is a very sensible choice for practitioners that wantto incorporate machine learning to their products while reducing times and costs. However, to benefit theiradvantages, a method for assessing their performance when applied to a target application is needed. In thiswork, we present a robust uncertainty-based method for evaluating the performance of both probabilistic andcategorical classification black-box models, in particular APIs, that enriches the predictions obtained withan uncertainty score. This uncertainty score enables the detection of inputs with very confident but erroneouspredictions while protecting against out of distribution data points when deploying the model in a productivesetting. We validate the proposal in different natural language processing and computer vision scenarios.Moreover, taking advantage of the computed uncertainty score, we show that one can significantly increasethe robustness and performance of the resulting classification system by rejecting uncertain predictions-
dc.format.extent26 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1109/ACCESS.2020.2996495-
dc.relation.ispartofIEEE Access, 2020, vol. 8, p. 101721-101746-
dc.relation.urihttps://doi.org/10.1109/ACCESS.2020.2996495-
dc.rightscc-by (c) Mena, José et al., 2020-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)-
dc.subject.classificationIntel·ligència artificial-
dc.subject.otherMachine learning-
dc.subject.otherLearning classifier systems-
dc.subject.otherArtificial intelligence-
dc.titleUncertainty-based Rejection Wrappers for Black-box Classifiers-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec700793-
dc.date.updated2020-07-14T07:18:55Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
700793.pdf4.59 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons