Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/171094
Title: Spatial mapping of the collagen distribution in human and mouse tissues by force volume atomic force microscopy
Author: Calò, Annalisa
Romin, Yevgeniy
Srouji, Rami
Zambirinis, Constantinos P.
Fan, Ning
Santella, Anthony
Feng, Elvin
Fujisawa, Sho
Turkekul, Mesruh
Huang, Sharon
Simpson, Amber L
D'Angelica, Michael
Jarnagin, William R
Manova-Todorova, Katia
Keywords: Microscòpia de força atòmica
Col·lagen
Bioquímica
Atomic force microscopy
Collagen
Biochemistry
Issue Date: 20-Sep-2020
Publisher: Nature Publishing Group
Abstract: Changes in the elastic properties of living tissues during normal development and in pathological processes are often due to modifications of the collagen component of the extracellular matrix at various length scales. Force volume AFM can precisely capture the mechanical properties of biological samples with force sensitivity and spatial resolution. The integration of AFM data with data of the molecular composition contributes to understanding the interplay between tissue biochemistry, organization and function. The detection of micrometer-size, heterogeneous domains at different elastic moduli in tissue sections by AFM has remained elusive so far, due to the lack of correlations with histological, optical and biochemical assessments. In this work, force volume AFM is used to identify collagen-enriched domains, naturally present in human and mouse tissues, by their elastic modulus. Collagen identification is obtained in a robust way and affordable timescales, through an optimal design of the sample preparation method and AFM parameters for faster scan with micrometer resolution. The choice of a separate reference sample stained for collagen allows correlating elastic modulus with collagen amount and position with high statistical significance. The proposed preparation method ensures safe handling of the tissue sections guarantees the preservation of their micromechanical characteristics over time and makes it much easier to perform correlation experiments with different biomarkers independently.
Note: Reproducció del document publicat a: https://doi.org/10.1038/s41598-020-72564-9
It is part of: Scientific Reports, 2020, vol. 10, num. 1, p. 15664-15664
URI: http://hdl.handle.net/2445/171094
Related resource: https://doi.org/10.1038/s41598-020-72564-9
ISSN: 2045-2322
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
703681.pdf4.74 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons