Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/173616
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSevink, Geert Jan Agur-
dc.contributor.authorLiwo, Adam-
dc.contributor.authorAsinari, Pietro-
dc.contributor.authorMacKernan, Donal-
dc.contributor.authorMilano, Giuseppe-
dc.contributor.authorPagonabarraga Mora, Ignacio-
dc.date.accessioned2021-02-03T11:05:38Z-
dc.date.available2021-09-07T05:10:19Z-
dc.date.issued2020-09-07-
dc.identifier.issn0021-9606-
dc.identifier.urihttp://hdl.handle.net/2445/173616-
dc.description.abstractIn this perspective communication, we briefly sketch the current state of computational (bio)material research and discuss possible solutions for the four challenges that have been increasingly identified within this community: (i) the desire to develop a unified framework for testing the consistency of implementation and physical accuracy for newly developed methodologies, (ii) the selection of a standard format that can deal with the diversity of simulation data and at the same time simplifies data storage, data exchange, and data reproduction, (iii) how to deal with the generation, storage, and analysis of massive data, and (iv) the benefits of efficient 'core' engines. Expressed viewpoints are the result of discussions between computational stakeholders during a Lorentz center workshop with the prosaic title Workshop on Multi-scale Modeling and are aimed at (i) improving validation, reporting and reproducibility of computational results, (ii) improving data migration between simulation packages and with analysis tools, (iii) popularizing the use of coarse-grained and multi-scale computational tools among non-experts and opening up these modern computational developments to an extended user community.-
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Institute of Physics-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1063/5.0019773-
dc.relation.ispartofJournal of Chemical Physics, 2020, vol. 153, p. 100901-
dc.relation.urihttps://doi.org/10.1063/5.0019773-
dc.rights(c) American Institute of Physics , 2020-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationDinàmica molecular-
dc.subject.classificationAprenentatge automàtic-
dc.subject.otherMolecular dynamics-
dc.subject.otherMachine learning-
dc.titleUnfolding the prospects of computational (bio)materials modelling-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec706722-
dc.date.updated2021-02-03T11:05:38Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/676531/EU//E-CAM-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
706722.pdf1.14 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.